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ABSTRACT

Smart image editing and processing techniques make it easier to ma-
nipulate an image convincingly and also hide any artifacts of tamper-
ing. Common real world forgeries can be accompanied by enhance-
ment operations like filtering, compression and/or format conversion
to suppress forgery artifacts. Out of these enhancement operations,
filtering is very common and has received a lot of attention in foren-
sics research lately. However, different filtering operations and im-
age formats are not investigated deeply and simultaneously. We pro-
pose an algorithm to detect if a given image has undergone filtering
based enhancement irrespective of the format of image or the type
of filter applied. In the proposed algorithm, we exploit the corre-
lation of spatial domain quantization noise of an image by extract-
ing transition probability features and classify the image as filtered
or unfiltered. Experiments are performed to evaluate the robustness
and compare the performance of the proposed technique with popu-
lar forensic filtering detection algorithms and is found to be superior
in most of the cases.

Index Terms— Filtering detection, Quantization noise, Markov
features, JPEG and TIFF.

1. INTRODUCTION

Assuring the integrity/authenticity of digital evidence images is of
paramount importance for Law Enforcement Agencies. Several
techniques have been developed to detect if a given image is authen-
tic or forged. Since a forgery is often followed by an enhancement
technique to make the forgery less detectable and more convincing,
recently algorithms are being developed to detect such enhancement
operations. Operations like noise reduction, filtering, contrast en-
hancement, de-blurring and edge sharpening etc can be performed
as part of the forgery [1]. Therefore, detecting these enhancement
operations that manipulate the image, can be considered a valid as-
sumption that indicates forgery. In [2] - [6], double compression is
considered as a possible indication of forgery. This may not be true
always, as an image may be simply decompressed and recompressed
again or saved in a different format without any other manipulation.

In view of the effect of filtering on forgery or forensic algo-
rithms, authors of [7], [8] and [9] proposed the importance of me-
dian filtering detection and how non-linear filtering operations can
be used maliciously to hide fingerprints left by forgery. In order to
counter this problem, techniques like [7] - [11] were proposed to de-
tect median filtering specifically. These techniques, however, do not
consider other linear filtering operations that can indicate possible
forgery. For example, in [8] authors have specifically used the co-
efficients of an Auto Regressive model by fitting the Median Filter
Residual (MFR) of each image. The same features or model can-
not be used to detect linear filtering. Moreover, common scenarios
such as filtering of JPEG compressed images or double compressed
images are not investigated. Similarly, linear filtering detection algo-
rithms like [1] and [12] proposed to detect and classify full frame lin-

ear filtering and compression. In both these papers, however, JPEG
compression post filtering is not considered. This might suppress the
artifacts of operations that the image underwent prior to compression
[8]. Also, the effect of median filtering in JPEG images and filtering
in uncompressed images are not discussed. The features used in the
paper are specific to the effect of linear filtering on DCT histograms
and hence the same features or model may not be effective in de-
tecting median filtered images. In [13] authors considered various
kinds of manipulations such as filtering, contrast enhancement etc.
obtaining a good accuracy using Fusion boost ensemble classifier.
However, results for lower quality factors of JPEG compression are
not provided. Also the data set considered is small. It is unrealistic

Fig. 1. Block diagram of the forensic analysis pipeline for authentication

for practical applications to have different algorithms for each type
of filter, format of image, type of forgery etc as we may never know
which one to use. Therefore, it is necessary to come up with algo-
rithms that can consider a wide possibility of scenarios and formats
of images. For example, in case of filtering detection, the algorithm
should be able to detect if a given image is filtered or unfiltered,
irrespective of whether the image is compressed or uncompressed.
In addition, both linear and non linear filtering should be consid-
ered. Hence, we propose an efficient technique to detect images that
are enhanced using linear filters (Gaussian, Laplacian, Average, Un-
sharp) and non linear filters (Median). In our experiments both JPEG
and TIFF1 images are considered.

We believe this is the first forensics algorithm that targets both
linear and non linear filters for different image formats. The block
diagram of a typical forensic pipeline in this case is given in Fig 1. To
replicate real world manipulation process, we also perform common
forgeries such as splicing and copy move along with filtering to show
they do not affect the efficiency of the filtering detection algorithm.
The technique is based on the principle that, when filtering and com-
pression are applied, the spatial correlation of the compression noise
in the image gets perturbed. Spatial domain compression noise is
shown to be correlated by Robertson et. al. in [14]. It is shown
in Fig 2, that compression noise of unfiltered images has low pass
characteristics and when filtering (low pass, high pass or median)
is applied, this correlation is disturbed. We leverage this behavior
of compression noise to propose a single model that can detect if a
given image is filtered or unfiltered for the considered filters. We use
the quantization noise model proposed by [14] and a modification
of the natural image model proposed in [15] to extract compression

1JPEG compression is lossy while TIFF is uncompressed.



Fig. 2. Average Power spectral density obtained from compression noise of 650 unfiltered, low pass, median and high pass (left to right) filtered images.

noise. Though other image prior models can be used, we propose a
modification to this prior model that provides favorable results (Sec
4.1) by incorporating the effects of blocking artifacts produced dur-
ing compression. The noise thus extracted is then modelled as a
first order spatial ergodic Markov chain which has been proven to
be an effective feature ([16] - [19]). These features are used to de-
tect whether a given image has been filtered or unfiltered. The results
are provided using standard UCID [20], NCID [21] and Dresden[22]
image databases.

The rest of the paper is organized as follows. Section 2 gives the
related works and the proposed modified prior model based noise
extraction followed by feature extraction. In Section 3, the experi-
mental setup and database creation is given. Section 4 provides the
detection results and evaluates the efficiency of our method with the
existing algorithms. Section 5 concludes the paper by providing fu-
ture works.

2. PROPOSED SCHEME

Let I be a natural JPEG image scene in spatial domain under con-
sideration. Let Z be the vectorized form of an 8 × 8 block of the
image I in spatial domain while Y the vectorized form of the cor-
responding block in DCT domain. All details and variables here
after are given for a single block, unless specified otherwise. The
compression noise for a non overlapping 8× 8 block can be written
as eZ = Z − Zqwhere Zq is the quantized block. This noise is
characterized as a zero mean multivariate Gaussian with KeZ as its
covariance matrix as,

P(eZ) =
1

(2π)D/2|KeZ |1/2
exp

(
− 1

2
eT
ZKeZ

−1eZ

)
(1)

whereD = 64 is the number of dimensions of the multivariate Gaus-
sian2. The natural image prior model used in our algorithm is ob-
tained from [15]. This model is based on the Markov Random Field
(MRF) modeling [15] of images that represents the local structures
of an image using conditional probability distribution where image
pixels’ values depend only on its neighborhood. The joint distribu-
tion is given by Gibbs measure as,

p(Z) =
1

β
exp
(
− λ

∑
c∈C

ρT (d
t
cZ)) (2)

where, β is a normalization constant, c are local groups called
cliques whereas C is the set of all such cliques depending on
the neighborhood structure of the Huber Markov Random Field
(HMRF) [14]. Here, ρT (·) is the Huber function [15] and vectors
dt
c extracts differences between a pixel and its neighbors such that

the prior model degenerates to,

p(Z) =
1

β
exp

(
− λ

M−1∑
m=0

∑
n∈Nm

ρT (Z[n]− Z[m])

)
(3)

2Please refer [14] for a detailed explanation.

Where Nm is the index set of neighbors for the mth pixel, and M
is the number of pixels in the block. We next present the denois-
ing algorithm using a modified version of the above mentioned prior
model followed by feature extraction and classification.

2.1. Quantization Noise Extraction

We modify the prior model given in eq (2) by introducing a multi-
plicative factor w in the Huber function to incorporate the effect of
blocking artifacts caused due to compression. Thus, the new Huber
function ρT (·) after modification is,

ρT (u) =

{
wu2, |u| <= T,

w(T 2 + 2T (|u| − T )), |u| > T

w =

{
1 ∀ Z(u) : u 6∈ S,
γ otherwise

(4)

where T the threshold set in [14]. The parameters γ (hence w for
boundary pixels) and T are empirically determined. S is the set of
pixels which belong to the border pixels in each 8×8 block. We use
Bayesian MAP estimation for extracting the compression noise from
the prior and the noise model. The maximum a posteriori (MAP)
criterion is,

Ẑ = argmax
Z

p(Z|Zq) = argmax
Z

p(Z)p(Zq|Z) (5)

where Ẑ is the final estimate for the block after removing the
compression noise. Though Zq is a deterministic function of Z,
the p(Zq|Z) term in the above equation is considered as a Gaussian
random variable with mean Z and auto covariance Kez as explained
in [14]. After substituting eq (1) and eq (3) in eq (5) we get,

Ẑ = argmax
Z
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β
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(6)

In order to maximize eq (5), the argument of exp(.) in eq (6)
is minimized using gradient descent algorithm3. Combining all the
resulting denoised non overlapping blocks Ẑ, we generate the de-
noised image Î. The compression noise Nc for the image is then
obtained as Nc = I− Î.

3Details of the algorithm are not given owing to space constraints



CLASS IMAGE CAPTURED OPERATIONS BY ADVERSARY FORENSIC END
(No. Of Images) Manipulation Enhancement Saved as

UNFILTERED TIFF (1000) & – – TIFF/JPEG-qf2 JPEG (qf2)
JPEG-qf1 (2000)

FILTERED TIFF (1500) & CM/SP filtering from Table 2 TIFF/JPEG-qf2 JPEG (qf2)
JPEG-qf1 (1500)

Table 1. Data set creation

2.2. Transition Probability Feature Extraction

The noise Nc extracted from a JPEG compressed image can be
modeled as a first order ergodic spatial Markov chain such that,
p(Xt+1 = x|X1 = x1, X2 = x2, ..., Xt = xt) = p(Xt+1 =
x|Xt = xt), where Xt+1 is the present state and (X1, X2, ..., Xt)
are the previous states. The features that we use to characterize this
noise is Transition Probability Matrix (TPM). The states of the chain
are the elements of the difference array (gradient along eight direc-
tions) obtained from the absolute value of noise matrix as shown in
eq (7). It was found experimentally that eight directions rather than
just four as in literature [3, 19], gave a better result. Representation
along the right direction is shown hereafter and those along other
directions can be obtained in a similar way.

D→c (i, j) = |Nc(i, j)| − |Nc(i, j + 1)| (7)

where i = 1, 2...,M and j = 1, 2..., (N− 1) are indices represent-
ing each element in the matrix. Values in each difference array D→c
are rounded off to the nearest integer to get integer values states and
then truncated between −Tr to Tr before extracting the transition
probabilities,

D̃→c (i, j) =


−Tr,D

→
c (i, j) < −Tr

+Tr,D
→
c (i, j) > +Tr

D→c (i, j), otherwise

(8)

This provides us with (2Tr+1) different states to model the Markov
chain. In our model Tr is set to 15 as 95% of the values in the dif-
ference array of noise are distributed within [-15, 15]. Also, experi-
ments were performed with values between 3 to 30 for Tr and it was
found that saturation in performance reached after 15. Moreover, for
values lower than 15, percentage of values considered as is, dropped
significantly, and so did the accuracy. Now, TPM is constructed as,

P→u,v = Pr(D̃→c (i, j + 1) = u|D̃→c (i, j) = v) (9)

where, u, v ∈ [−Tr, Tr], and u, v ∈ Z. Similarly, the probabilities
can be obtained for other directions. The size of each TPM will be
31 × 31. This gives us (2Tr + 1) × (2Tr + 1) = 961 transition
probabilities for each difference array. The TPMs along the eight
directions are concatenated to get the final feature which is 7688-D4,
and this remains the same irrespective of the size of the image. These
features are then used to train an SVM model and classify a test
image as filtered or unfiltered using the trained model as described
in the following sections.

3. DATABASE

We consider 1338 uncompressed images from the UCID database
[20] along with 1262 random Never compressed images with sig-
nificant content from the 5150 images of the NCID database [21].

4It is to be noted that, low dimensional linear projection of the feature vector to
reduce complexity, did not increase the accuracy. Hence the feature set is entirely con-
sidered for classification.

FILTER TYPE KERNEL SIZE VALUE 5 TOTAL
(NL / L)

Median filter (NL) (3× 3, 5× 5, 7× 7) – 3
Gaussian filter (L) (3× 3, 5× 5) σ − 0.5, 1 4
Average filter (L) (3× 3, 5× 5) – 2

Laplacian filter (L) (3× 3) α− 0.1, 0.2 2
Unsharp filter (L) (3× 3) α− 0.2, 0.4 2

Table 2. Enhancement techniques performed as part of forgery. Here ‘NL’
indicates NonLinear filter whereas ‘L’ indicates Linear filter.

All the 1338 ucid images are cropped to 256 × 256 from the cen-
ter, matching the size of NCID images. We also take 400 single
compressed images captured using different digital cameras from the
dresden image database [22]. This together makes 3000 authentic
images of size 256 × 256 called the ‘original set’. Another 1000
random NCID images not present in the previous 1262 are single
compressed with a random factor qf1 ∈ (30, 80], qf1 ∈ Z+. This
set is called the ‘splicing set’. We generate two classes of images for
our experiments from these sets as given in Table 1. In the exper-
iments, a JPEG/TIFF image is forged, enhanced using a filter ran-
domly from Table 2 and then saved in TIFF/JPEG format following
a typical forgery pipeline. When the given final image is in uncom-
pressed TIFF format, it is JPEG compressed, referred in the Table
1 as ‘Forensic end’. The parameters in the table are to be read as
follows, qf1 ∈ (30, 80] whereas qf2 ∈ {30, 40, 50, 60, 70, 80, 90},
as in the Table 3. CM indicates copy move forgery of size s × s
where s ∈ (50, 130], s ∈ Z+ and SP indicates splicing forgery per-
formed by copying a s× s patch of an image from ‘splicing set ’ on
to the image to be spliced. Compression noise and TPM features are
extracted as given in section 2.1 and 2.2 from 6000 (3000 unfiltered
and 3000 filtered) images in total for each quality factor qf2 as in
the Table 3 after the above experiments.

4. EXPERIMENTAL RESULTS

In our experiments, λ in eq (6) is set to 0.1 while γ and T in eq
(4) are set to 5 and 10 respectively. Results for these parameters
are given below and these are empirically determined to give the
best results. Out of the 6000 images per quality factor, 1500 images
from authentic class and 1500 images from filtered class are used for
training while the remaining 3000 images are used for testing. We

Quality Factor 30 40 50 60 70 80 90

Accuracy (%) 80.5 82.4 78.5 82 81 85 82.4

Table 3. Detection accuracy for various quality factors

use RBF kernel binary classification SVM from [23] libsvm library.
Grid search is performed for determining the parameters that give
the best average cross validation (50% training and 50% testing) ac-

5Values are parameters used in matlab for specific filters.



curacy which is provided as (TPR + TNR)/2 in Table 3 where
TPR is the True Positive Rate and TNR is the True Negative Rate.

4.1. Evaluation

The results of our experiment is given in Table 3. It can be observed
from the table that the classification accuracy between an unfiltered
and a filtered image is on an average above 80% irrespective of the
quality factor of the last JPEG compression. In Fig 3 (a) the average
ROC curve of classification using the proposed method is plotted by
varying threshold of classification for probability scores generated
by SVM. It is to be noted that high TPR of 0.8 is achieved for consid-
erable FPR of 0.16 taking into account multiple scenarios together.
Also the time taken for extracting compression noise from one image
is around 120 seconds for a 256× 256 image while TPM extraction
and classification takes approximately 1 second in a 4GB RAM intel
i3 core processor based CPU using MATLAB. Compression noise
extraction takes more time as each 8 × 8 block is denoised by gra-
dient descent whose iterations and learning rate are empirically set.

(a) (b)

Fig. 3. (a) ROC curve using the proposed method and experimental setup
(b) ROC curve using the proposed method for linear filtering and median
filtering (refer Sec 4.2).

4.2. Comparison

Since, to the best of our knowledge, there is no work in the liter-
ature that simultaneously deals with JPEG and TIFF images along
with linear and non linear filtering, we compare the performance of
the proposed algorithm in the following manner. We perform sep-
arate experiments that adhere to experimental setup and considera-
tions followed in two state of the art techniques. ‘Image manipula-
tion pipeline’ here on means that images in the dataset considered
for the corresponding experiments have been through that pipeline
of processes.

Firstly, an experiment is done with 1000 images from the ‘orig-
inal set’ to compare our results with state of the art [1] for linear
filtering detection of JPEG images. The pipeline followed is JPEG

(qf2)
filtering−−−−−−→TIFF (i.e. dataset consists of filtered JPEG images

without any other post processing, since this is the pipeline fol-
lowed in [1]). To implement our algorithm for this pipeline, foren-
sic compression is done with quality factor 90 since final image of
the pipeline is TIFF. Classification is done using 50% samples for
training and the rest for testing with SVM using RBF kernel. It is
seen from Fig 3 (b) that very high TPR (above 0.85) is achieved
under very low FPR (about 0.05) when the proposed method is im-
plemented on experimental setup considered in [1] for qf2 = 80.
The accuracy achieved using the proposed algorithm and that of [1]
for filtering detection is given in Fig 4. Accuracy is found to be
significantly higher for all qf2.

Another experiment to detect only ‘median filtering’ is per-
formed using 1000 images to compare with state of the art [7].

Fig. 4. Comparing detection accuracy with [1] for various compression pairs

Pipeline followed here is TIFF
medianfilter−−−−−−−−−→JPEG (qf2) (i.e. dataset

consists of images that are JPEG compressed post filtering) where
qf2 = {70, 90}, since only results for these factors are available in
[7]. Detection accuracy is given in Table 4 for each qf2 and median
filter kernel as given in [7]. The proposed method gives better or

Median filter size 3× 3 5× 5

Quality factor 90 70 90 70

[7] 98 94.5 98.5 97.5

Proposed 99 95.25 98.5 96.5

Table 4. Detection accuracy for median filtering using [7] and proposed
technique

comparable performance in most cases. In Fig 3(b) ROC curve for
classification of 5× 5 median filtering of JPEG images compressed
with quality factor 70 using proposed method is given.

5. CONCLUSION

An effective method to detect filtering based on compression noise
characteristics is proposed. The contribution of this method is four
fold. First, it is not realistic to assume that the given image is JPEG
always or it has undergone only one type of filtering. The proposed
experimental setup overcomes these constraints by considering com-
pressed and uncompressed images along with multiple types of fil-
ters with an average of above 80% accuracy. Second, it is to be
noted that the method is indifferent to different compression factors
and various filters thereby not limiting the application to just double
compression, one type of filter or forgery detection. It is observed
that two different applications - median filtering detection [7] and
linear filtering detection [1] are combined here obtaining good accu-
racy in unconstrained settings. It also performs better than the state
of the art when the settings are constrained as in the literature. Third,
this technique proves the efficacy of compression noise and paves
way for more effective methods using the same to detect manipula-
tion rather than compression. Finally, to the best of our knowledge,
this is the first approach to solve filtering detection in both JPEG
and TIFF images considering various scenarios. In future work, we
plan to increase the efficiency of detection and study the effect of
localized filters and contrast enhancement on compression noise.
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